
Treasure and tragedy in kmem_cache mining for live
forensics investigation

Andrew Case a, Lodovico Marziale a, Cris Neckar b, Golden G. Richard, IIIc,*
aDigital Forensics Solutions, LLC, United States
bNeohapsis Inc., United States
cDept. of Computer Science, University of New Orleans, Lakefront Campus, New Orleans, LA 70148, United States

a b s t r a c t

This paper presents the first deep investigation of the kmem_cache facility in Linux from

a forensics perspective. The kmem_cache is used by the Linux kernel to quickly allocate and

deallocate kernel structures associated with processes, files, and the network stack. Our

focus is on deallocated information that remains in the cache and the major contribution

of this paper is to illustrate what forensically relevant information can be retrieved from

the kmem_cache and what information is definitively not retrievable. We show that the

kmem_cache contains a wealth of digital evidence, much of which was either previously

unavailable or difficult to obtain, requiring ad hoc methods for extraction. Previously

executed processes, memory mappings, sent and received network packets, NAT trans-

lations, accessed file system inodes, and more can all be recovered through examination of

the kmem_cache contents. We also discuss portable methods for erasing this information, to

ensure that private data is no longer recoverable.

ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The field of live forensics has grown exponentially in the last

few years due to the amount of information contained in

volatile storage and the impact the information can have on

an investigation. On systems properly utilizing full or partial

disk encryption, recovery of files and data can become

impossible once host machines are powered off and keying

material is lost. In the most extreme example, diskless

systems, such as those booted via a LiveCD, will lose all

session information once volatile memory is cleared. Even on

regular systems, awealth of information can be obtained from

system memory, such as processes, file system activity,

network connections and data, loaded kernel drivers, and

more. Depending on the system being analyzed, old and

inactive information can be also be collected, which then

forms the basis of a timeline of past systemactivity. Due to the

importance of this information both from a security and

forensics standpoint, the need for complete acquisition and

analysis is vital.

With this motivation in mind, we present the results of

our live forensics research targeting the Linux kernel’s

kmem_cache facility as a store capable of producing memory

structures deleted long in the past. Currently, no published

work utilizes this store for any security or forensics-related

purpose, even though it has a number of desirable forensic

traits, as we discuss later. Briefly, the kmem_cache is an

allocation system used by the Linux kernel to quickly allo-

cate C structures of the same size. It is strongly tied to the

Linux kernel’s virtual memory allocator and allows rapid

allocation and deallocation of kernel structures, such as

those responsible for process execution, networking, and

* Corresponding author:
E-mail address: golden@cs.uno.edu (G.G. Richard III).

ava i lab le at www.sc ienced i rec t . com

journa l homepage : www.e lsev ier . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 1eS 4 7

1742-2876/$ e see front matter ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2010.05.006

file system activity. As we will illustrate, a number of

structures of forensic interest are backed by this facility, and

freed objects with useful information are easily recoverable.

Old processes, memory maps, open files, NAT tables, socket

information, etc. was all successfully gathered during our

research effort, all of which can be used by investigators to

build a picture of a machine’s past operation. Since foren-

sics is concerned with both data recovery and privacy,

a simple method for sanitizing objects upon deallocation

was also developed. Created as a proof of concept, this

technique could easily be extended into a complete privacy

system or integrated into existing security and privacy

enhancing security projects. As listed in detail later, the

potentially large amount of sensitive and forensically

interesting data left behind in freed entries requires special

attention from a privacy standpoint.

The contributions of our work include documentation of

which structures are available in kmem_cache stores, what

data can be recovered from them and what cannot, a kernel

module that recovers all usable data, and a privacy module

that clears memory from caches upon the release of objects in

the stores.

2. Related work

Research and interest in live forensics has seen a surge in

recent years with a number of publications and projects

aimed at collecting volatile memory, analyzing it for forensi-

cally interesting data, cataloguing it for future use, and more

(Arasteh, 2007; Dolan-Gavitt, 2007; Halderman et al., 2008).

One of themain research areas of this field is the identification

and gathering of old and inactive objects within a system in

order to gain an understanding of past actions and this is the

area the in which the presented work focuses. Since live

forensics deals with volatile data that can be quickly over-

written (Chow et al., 2004; Solomon et al., 2007), any mecha-

nism that can acquire intact, deallocated information is

greatly prized by investigators. Past research in this area has

taken a number of approaches, the most prominent being to

simply scan a memory image for address ranges that appear

to match critical C structures used by the operating system

(Betz, 2005; Case et al., 2008; Garner, 2005; Schuster, 2006;

Volatility, 2009). Unfortunately, this type of scanning may

result in false positives due to the amount of unclassified

binary data in a memory image and false negatives due to

sanity checking necessary to reduce the false positive rate. To

alleviate this issue, a team from Georgia Tech published

a novel virtual machine monitor (Dolan-Gavitt et al., 2009)

capable of recording access to members of EPROCESS struc-

tures in a Windows guest. The values and ranges assigned to

these structure members were then recorded and analyzed.

This allows the system to accurately and dynamically validate

structures since the ranges of used members are pre-calcu-

lated and unused or unnecessary members are skipped.

Through use of kmem_cache caches, the presented system is

capable of quickly identifying all structures backed by a cache

without memory scanning or reliance on software outside the

native operating system. This allows first responders to

quickly get a complete structure listing without having to sift

through false positive and negatives.

In a past DFRWS publication (Schuster, 2008), forensic

analysis of the Windows pool allocation algorithm was per-

formed to determine how long kernel level objects stay active

and inwhatorder theyare reused.While thenext logical step in

thiswouldbe to interactwith thestructures,weareawareofno

work to date in this area. In a recent Phrack article (H L, 2009),

the author describes in great detail the allocation and deal-

locationalgorithmsofall of thekernelsallocators ina leadup to

the description of his created kernel heap protection project,

KERNHEAP, that is now part of the GrSecurity project. While

describing theseallocators, thekmem_cache facility isdescribed

as well as a short writeup on the sensitivity of data within the

cache. Since this paper is attempting to deter reliable kernel

exploitationunder Linux, the author fears that the predictable,

un-sanitizeddatawithin thecachescouldbeusedasstaticdata

to build a reliable exploit. He also mentions the existence of

private information in other dynamic areas such as wireless

keys, tty buffers, cryptographic information, and IPC. Like the

previous work discussed, no specifics of the sensitive struc-

tures contained in the kernel are mentioned and no effort is

made to extract the data. In (Chow et al., 2005), the persistence

of sensitive data is also discussed in detail and a system pre-

sented that zeroes memory on deallocation.

3. kmem_cache internals

The inactive object recovery that we describe later in this

paper relies on the Linux kernel’s kmem_cache facility. This

caching mechanism sits above the system memory allocator

and provides quick access to C structures of the same size.

Fig. 1 shows the definition of the kmem_cache_create function

and a call to the function in the 2.6.26 Linux kernel for creating

the cache that holds all task_struct (process descriptor)

structures.

After the kmem_cache_create function returns, the task_

struct_cachep structure can be used to quickly allocate task_

struct structures within the kernel. The kmem_cache facility is

intended to be used for structures that are allocated and

deallocated often, such as those related to process handling,

file system manipulation, and network processing. Under

normal conditions, the use of freelists and per-cpu caches

ensures that allocation can be done in O(1) time.

struct kmem_cache *kmem_cache_create(
const char *,
size_t, size_t,
unsigned long,
 void (*)(struct kmem_cache *, void *));

task_struct_cachep =
kmem_cache_create("task_struct",

sizeof(struct task_struct),
ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);

Fig. 1 e Prototype and sample call for kmem_cache_create()

function.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 1eS 4 7S42

Themain reason that specific caches canbeused for inactive

object recovery is that all structures of the given type are stored

in the cache and that active entries cannot be removedwithout

compromising system stability. Entries must be allocated and

kept in the cache until destruction because the built-in kernel

API expects these structures to be managed by the kmem_cache

facility. Not only would structures outside the cache have to be

manually initialized, updated, and deallocated, butmany built-

in functions could not be used due to their expectation that the

structure resides in the cache. As an example, task_struct has

over fiftymembers that would have to be assigned on creation,

andmany of these are structures that have their ownmembers

and sub-structures that would have to be initialized. Deal-

location would also be extremely difficult due to the number of

subsystems that would need to be understood, affected, and

modified.Concurrency control during both operationswouldbe

very complicated to achieve due to some code paths expecting

to have exclusive rights over manipulation of structures and

their members. Because of these issues, successfully handling

a structure outside the cache for one kernel version would be

a nearly impossible task, and handling in a kernel version

agnostic manner would be extremely difficult. An attacker also

cannot let the kernel initialize a structure and then remove it

from the cache while it is still active. Since the deallocation

routines treat the structure pointer as a kmem_cache member,

the missing metadata and invalid pointer causes system insta-

bility, including kernel panics. Marking the entry as free would

cause similar results as the next allocation of the structure type

would overwrite the attacker’s data. Since every instance of

a structure is guaranteed to have originated and stayed in the

cache, memory scanning is no longer necessary. Not having to

carve for structures in memory, a technique used in most

previous work, removes the chance of false positives and

ensures that all entries are recovered.

The other reasonwhy the kmem_cache facility is useful for

inactive object recovery is that individual caches can be easily

enumerated. Assuming proper concurrency controls are used,

this allows for quick gathering of all inactive structures of

a cache, which can then be reported and investigated.

3.1. SLAB

During our research effort, our techniques were tested against

the main two system allocators under Linux, with SLAB being

thefirst. This is theoldestof theavailable 2.6 allocators, buthas

stood the test of time and is chosen by the more conservative

Linux distributions. kmem_cache entities are tied directly to the

allocatorandoptimized for it. Since traversal of a specificcache

is not an operation supported by the built-in SLAB API, this

functionality had to be developed for our use. Our algorithm

works by first traversing a specific cache’s kmem_list3member

for each online CPU. A kmem_list3 holds three circularly linked

listsof eachCPU’s slabs.The lists containedare full, inwhichall

entries are active, partial which contains both active and free

entries, and free, which contains only inactive entries. In order

to get inactive entries from the cache, the partial and free lists

are walked and inactive entries are added into a hash table. To

determine if entries in the partial list are inactive, a bitmap is

first created for the maximum number of entries in a cache.

Next, the free list of the slab structure for each partial list

element is traversed and corresponding entries marked in the

bitmap. Finally, the bitmap is traversed, and allmarked entries

are added into the inactive entries hash table.

Since the presented research revolves around inactive

entries in caches, studying the lifetime and amount of free

entries relative to a cache’s size is of obvious importance. In

this regard, SLAB is very generous and will maintain caches

with well over half the entries free. This allows for effective

recovery of old structures, and for systems that become

extremely active, and then enter non-use states, freed entries

may never be reused.

3.2. SLUB

The second allocator tested was SLUB. At the time of writing,

this is the latest and most efficient allocator and is currently

being integrated by almost all distributions. Unlike SLAB,

which does not have a defined iteration algorithm, SLUB

contains a for_each_free_object macro that can be used to

effectively iterate over all free objects.

While this macromakes traversal of the free entries trivial,

SLUB has an aggressive memory reclamation algorithm that

leaves very few inactive objects in caches. Where SLAB may

have over half of the cache free, SLUB leaves as little as three

or four entries free out of dozens or hundreds. This hampers

the recovery of historical data on busy systems, since new

allocations will quickly use the few available free objects.

3.3. Handling freed structures

When analyzing freed structures, special care must be taken

to ensure that pointers are valid before being dereferenced.

Throughout the developed kernel module, special checks are

made to ensure that objects point inside the kernel and that

structure members contain sane values. For the structures

stored in the cache, their non-pointer members such as inte-

gers and embedded arrays, will remain intact unless explicitly

reset on free. Pointers aremore troublesome, asmany of them

are set to NULL on deallocation, thus destroying the reference

to potentially valuable data, or they point to a dynamic

memory address that has since been overwritten. In Section 4

of this paper, we document the members that normally

contain forensically interesting data, but are either set to

NULL or point to unusable data after deallocation. This

information is presented to aid efficient further development

of live forensics techniques utilizing the kmem_cache.

4. Inactive entry recovery

The following section describes our effort to recover as much

useful information as possible from a number of caches

within the kmem_cache facility. Due to the issues with free

structures and structure members discussed previously, each

potentially interesting structure member had to be tested

individually for valid information after free.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 1eS 4 7 S43

4.1. Processes

The ability to identify and collect terminated processes allows

for partial reconstruction of past activity on a system. The

Linux kernel’s process descriptor structure, task_struct,

contains all the information that links a process to its open

files, memory mappings, signal handlers, network activity,

and more. Fortunately for investigators, all task_struct struc-

tures are kept within the task_struct_cachep inside the

kmem_cache. Unfortunately, a number of useful members,

such as mm and files, are set to NULL upon process termina-

tion. As shown later, these memory management and open

file structures are recoverable through other caches, but there

is no known method to reliably link these structures back to

their owning process for all kernel versions.

Members that are recoverable include those necessary to

get a ps style listing that contains the process name, user and

group ID, and process ID. Fig. 2 shows a snippet of terminated

processes recovered on a test system.

Linking terminated process to other tasks is hampered

since the children and siblings lists are cleared upon process

termination. This hampers the discovery of child processes of

terminated processes as well as the processes with the same

parent process as the current one. The parentmember is active

in the structure, however, and can be used to walk backwards

through the successive list of executed processes.

Timelines of user activity make forensics investigations

quicker and more accurate as the investigator can accurately

gain the “big picture” of activity and join single actions into

large groups of events. To help enhance timelining capabil-

ities, the developed gathering module records the time the

process started, how long it ran, and howmuch CPU time was

used. This information can be gathered from the time

members of task_struct and by replicating algorithms found in

the kernel’s task accounting code. The following figure shows

the output of the task gathering module after having run

a process named SomeApp.

As can be seen in Fig. 3a, SomeApp was run immediately

after 13:24:01 and later on the recovery module was run. The

reported output of the recoverymodule is shown in Fig. 3b and

reports on the timing information of the previously termi-

nated process. Extraction and conversion of the reported start

time reports 13:24:02 which is 1 s off the date command. This

1 s discrepancy is expected since the date command ran

before the SomeApp command.

Combination of the two process recovery modules would

allow for not only reconstruction of processes, but also precise

timelining of the recovered tasks.

4.2. Memory mappings

When a process is created, its stack, heap, main executable

code, data, and shared libraries are mapped, using the mmap

facility, into the new address space. Inside the kernel, each

mapping is represented by a vm_area_struct and the set of

mappings for a process are stored in a linked list that is con-

tained in the process’s mm_struct. All mm_struct structures are

contained within the mm_cachep allocated by the kmem_cache

and can be used to gather the mappings, command line argu-

ments, environment variables, and other memory information

for a single process. Unfortunately, until kernel release 2.6.26,

there was no method for linking mm_structs to their respective

task_struct. This means that while much information can be

gathered about a process’ memory, there is no automatic

method to associate it with a specific process structure. In

kernels since 2.6.26 with cgroups enabled, a new member,

owner, points to the owning task_struct and can be used to link

process and memory descriptors together programmatically.

Even when the pointer to the process structure is missing,

manual analysis of the contents can reveal a wealth of infor-

mation.Manual linkingofstructureswithprocessesmayalsobe

possibleas themappingscontain thenameof thebinary loaded.

4.3. Open files

Gathering information about open files, including the process

that opened a file, the full path of the open file, and its owner

are potentially very useful pieces of evidence in a forensics

investigation. Unfortunately, all of this information is lost

during the deallocation process for file structures.While some

information, such as the file’s user and group ID and open

mode can be retrieved, the more useful information like the

file’s name is unrecoverable since the directory entry pointer

is set to NULL on free.

4.4. Filesystem inode caches

Every filesystem driver maintains a kmem_cache to track active

inodes. Traversal of the free entries of these caches will reveal

previously opened files and possibly the name of files that have

NAME PID UID GID
apt-cache 6306 0 0
ld 6386 1002 1002
lsb_release 6196 0 0
kstopmachine 6343 0 0
apt-cache 6298 0 0
lsb_release 6330 0 0
sh 6354 0 0
lsb_release 6353 0 0
as 6391 1002 1002
vim 6241 1002 1002
apt-cache 6403 0 0
as 6361 1002 1002
ld 6363 1002 1002

Fig. 2 e Listing of previously exited processes obtained by

mining the kmem_cache.

Sun Apr 11 13:24:01 EDT 2010
SomeApp pid: 1340

debian kernel: [100187.829351] SomeApp 1340
1271006642 20512635

debian:~/slbwalk# date -d "@1271006642"
Sun Apr 11 13:24:02 EDT 2010

a

b

c

Fig. 3 e a. Running SomeApp which reports PID of 1340; b.

The information reported by the gathering module about

the process (start time in bold); c. Converting the reported

start date to human-readable format.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 1eS 4 7S44

been deleted since they were last used. Unfortunately, the

normal algorithm for gathering the names of opened files,

walking the list of the inode’s directory entries, is not usable

since the list is cleared on deallocation. Recovery of the names

can still be achieved though with the help of the Sleuthkit,

however, since the inode number is still accurate in the struc-

ture. Fig. 4 shows the results of traversing the free inode cache

and then passing the inode number of free objects to ffind of the

Sleuthkit, to perform a “dead” analysis of the inode in a fil-

esystem image.

When testing this module, the ext3 filesystem was used

and its inode cache, ext3_inode_cachep, was traversed. This

cache actually contains ext3_inode_info structures, and these

structures embed a regular inode structure. The inode struc-

ture allows the module to gather an inode’s owner, group,

mode, and inode number. Investigators can use this infor-

mation to discover recently opened files, the permissions the

file was opened with, and which user opened the file.

4.5. Socket buffers

FACE (Case et al., 2008) illustrated that both un-transmitted

and recently received network packets can be retrieved by

walking the receive and send queues of a socket structure. The

work described in that paper leverages this technique to tie

data from socket buffers and network dumps together for

further analysis. Unfortunately, these queues are emptied on

free, but the individual socket buffers are stored in the

skbuff_head_cache backed by the kmem_cache, which stores

sk_buff structures. Enumeration of the inactive structures in

this cache produces previously sent and received packets

from the host machine and can be used in conjunction with

FACE to directly match packets in a network dump with

packets in the caches.

Insideofeach sk_buff isastruct sock thatcanbeusedtoobtain

the inet_sock for thecurrent socketbuffer. Since the sockmember

is a pointer to dynamically allocatedmemory, there is a chance

that the values inside of it could be corrupt. In the cases that it

isn’t corrupt, which is verified by ensuring the address is inside

thekernel, thedestinationandsource IPaddressandport canbe

recovered. This can be used to help tie the specific socket buffer

to a particular process or daemon. The address of the sock

structurecanalsobeusedtogroupsocketbuffers fromaprocess

together since each will point to the same address.

4.6. Bound sockets

Before network servers can start accepting connections, they

must bind() to a network port. In order to facilitate fast lookups

of open and in-use ports, the Linux kernel tracks each in-use

port within a quickly searchable data structure. For the TCP

protocol, each port is kept within the bind_bucket_cachep of the

tcp_hashinfo structure. This cache holds inet_bind_bucket

structures whose member port contains the listening network

port. This structure also contains a list of sock structures that

reference the port, but unfortunately this list is cleared on

deallocation. Enumeration of inactive entries of this cachewill

reveal ports that were previously used to accept network

connections. In investigations where network capable mal-

ware was either present on the system or suspected to be

present, this cache may be useful to help prove or disprove its

existence. The port numbers can also be used to quickly point

an investigator to interesting data within a network capture.

Finally, combined with the network caches presented in the

rest of this section, an investigator can gather a large amount

of information related to past network activity solely from the

machine under investigation. This will save investigative time

normally spent examining server, IDS, and router logs.

4.7. Netfilter NAT table

The last cache explored, nf_conntrack_cachep, stores the Net-

filter connection tracking information in nf_conn structures.

Netfilter (netfilter.org) is the underlying framework for packet

filtering in the Linux kernel, and the popular firewall tech-

nology, IPTables, is built upon it. In order to provide NAT

capabilities, the connection tracking module must store the

source and destination IP address and port for each translated

connection. In the current Linux implementation, the

incoming and outgoing translation for each connection is

stored within the tuplehash member of each nf_conn structure.

By enumerating the connection tracking cache and walking

each connection tuple, expired network translations can be

fully recovered. The following figure shows a snippet of the

output generated by the gathering module after having

previously connected the test system to a number of different

Google webserver IP addresses on TCP port 80 (Fig. 5).

The implications of recovering these entries are significant

sincethis informationcouldonlybepreviouslygatheredreliably

bymonitoring network traffic at the time of the connections. By

using these newly developed capabilities, investigators can

instantly build a list of past connections on the target machine.

In investigations involving network gateways, historical subnet

network activity can be easily gathered from one module.

debian:~/slabwalk# insmod ./slabwalk.ko
debian:~/slabwalk# head -5 /var/log/messages
kernel: [35566.045181] inode: 106310 0 0
kernel: [35566.059469] inode: 106312 0 0
kernel: [35566.071471] inode: 139091 0 0
kernel: [35566.082007] inode: 106308 0 0
debian:~/slabwalk# ffind /dev/sda1 106310
/usr/share/zoneinfo/posix/America/Fortaleza/tmp
/cceZLcAc.o
debian:~/slabwalk# ffind /dev/sda1 139091
/var/run/sshd
debian:~/slabwalk# ffind /dev/sda1 106308
/usr/share/zoneinfo/posix/America/Fortaleza/tmp
/cceoInI5.o

Fig. 4 e Traversing the ext3 inode cache and using the

Sleuthkit to obtain filenames.

src: 192.168.181.132 255 dst: 74.125.95.35 80
src: 192.168.181.132 255 dst: 74.125.95.18 80
src: 192.168.181.132 252 dst: 74.125.95.21 80
src: 192.168.181.132 252 dst: 74.125.95.41 80
src: 192.168.181.132 252 dst: 74.125.95.42 80
src: 192.168.181.132 252 dst: 74.125.95.22 80
src: 192.168.181.132 252 dst: 74.125.95.17 80
src: 192.168.181.132 252 dst: 74.125.95.44 80

Fig. 5 e Freed NAT translation table entries.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 1eS 4 7 S45

Currently this must be accomplished by gathering logs of

upstream hosts such as ISP routers or end-servers.

5. Privacy implications/fixes

Besides recovery and analysis, digital forensics is also con-

cerned with the privacy implications of using computer

systems.With this inmind, techniqueswere developed to clear

memory for kmem_cache backed structures upon deallocation.

To facilitate quick development of this feature and mass

portability, the jprobes (http://sourceware.org/systemtap/

kprobes/) facility was used to hook the kmem_cache_free func-

tion. This function is responsible for freeing an instance of

a structure fromaspecificcache. Jprobesallowsakernelmodule

to gain control of execution before a specific function executes.

It ismuch nicer than the closely related kprobesproject in that it

allows for regular C function parameters to be used in devel-

opment instead of simply getting an instruction-only interface

to the called function. Fig. 6a shows the code used to initialize

our jprobe structure and 6.b illustrates how clear_memory can

use the same prototype as the function it is hooking.

While thismethod looks promising for sanitization of freed

structures, it is still under development. The original algo-

rithm was designed to use the objsize member of the

kmem_cache structure in order to get the size of objects in the

cache.Objsize bytes starting at the addr parameter valuewould

then be cleared. Since the addr parameter points to the

structure being freed, it was believed that zeroing this

memory range would effectively and safely clear freed struc-

tures. While the algorithm worked on all self-generated tests

cases and also for clearing task_struct structures as they were

freed, when set to clear structures of all types, memory

corruption quickly caused kernel panics on both SLAB and

SLUB systems. The cause of this memory corruption is still

being investigated, but we believe we are a close to a full

solution on SLAB systems and that SLUB will either require

a different algorithm or may not be possible without modi-

fying kernel source.

When the difficulties with hooking kmem_cache_free were

discovered, another solution was simultaneously researched.

The second approach developed borrowed ideas from the

GrSecurity (http://www.grsecurity.org/) kernel configuration

option that sanitizes all pages upon free with only a 3% perfor-

mance penalty. This feature modifies both the __free_pages_ok()

and free_hot_cold_page() functions in the kernel in order to clear

each page before these functions return. Similar logic was

implemented inside of a new jprobe hook in order to free all

pages as the GrSecurity feature does. The developed solution

has the obvious advantage over the GrSecurity project as it can

beusedonanyrunningsystemwithoutmodifyingkernel source

code and without requiring kernel recompilation.

Once entries are cleared upon free, the data recoverable in

Section 4 would no longer be present, hindering live forensics

investigations greatly. This situation embodies the classical

tradeoff between the need for privacy and the valid use of

digital forensics to prosecute crime.

6. Evaluation

Our research and development was performed on two

VMware Workstation virtual machines. The following table

shows the distribution, kernel version, and allocator used for

each system.

A large number of tests systems were not needed since the

main feature being tested was SLAB versus SLUB, and these

allocators have not experienced major internal changes. An

extra Debian kernel was used because the default 2.6.26-2-686

kernel did not have kprobes enabled, so a vanilla 2.6.26 kernel

was compiledwith this feature in order to test it on SLAB.Much

ofoureffort involvedobserving thevaluesofstructuremembers

of interest in order to determine if they could be reliably used to

recover freed data. Once the set of usable members is deter-

mined, regular kernel algorithms, suchasprocess enumeration,

memory mapping walking, and open file handling, can be used

to gather freed objects and determine their values.

Each capability was tested to ensure that reliable results

were being reported. For processes, it was verified that each of

the reported fields was accurate. Memory mappings were

checked to ensure that reported information such as code,

heap, and stack addresses were correct and that the conver-

sion methods for modes and sizes were accurate. Inode

recovery was verified using the Sleuthkit. Networking infor-

mation was compared to netstat output collected while the

connections were still active and similarly the netfilter

translations were compared to output of /proc/net/nf_conntrack

before the translated connections had terminated.

7. Future work

The goal of this research was to explore the feasibility of

recovering inactive kmem_cache structures to aid live forensics

investigations. While this effort proved successful, in order to

be useful to less technical investigators, an application must

be developed that provides an appropriate interface to use our

techniques. A visual interface would not only help investiga-

tors quickly absorb the data, but would also help them

static struct jprobe my_jprobe = {
 .entry = clear_memory,
.kp = {

 .symbol_name = "kmem_cache_free",
 },
};

static void clear_memory(struct kmem_cache *s,
 void *addr)

a

b

Fig. 6 e a. Illustration of jprobe initialization code. b.

Illustration of clear_memory function prototype.

Distribution Kernel Version Allocator

Ubuntu 2.6.24e23-generic SLUB

Debian 2.6.26-2-686 SLAB

Debian 2.6.26 vanilla SLAB

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 1eS 4 7S46

manually link together groups of structures that cannot

currently be grouped programmatically (essentially, the

human provides the “deductive leap” necessary for such

grouping). Once this interface is developed, timelining of data

will be our next task. Having an ordered view into past events

will give investigators immediate insight and direction while

analyzing complex cases.

During this project, we attempted to identify all forensi-

cally interesting information that could be gathered from

kmem_cache objects. Due to the number of subsystems in the

kernel and the rapid pace in which changes are made to the

kernel, finding all relevant objects in one pass is difficult. After

accomplishing our previously stated goals, we are now re-

examining the entire set of objects backed by the kmem_cache.

The greater the amount of historical information gathered,

the less investigators have to guess to deduce past user

activities and the greater the context current data can be

placed in. All of this leads to quicker and more thorough

investigations, which can be performed by ordinary (read:

non-kernel hacking) investigators.

Determining themost appropriate algorithm to use to clear

sensitive memory on release will also be a key priority. The

amount and sensitivity of free information that can be gath-

ered through kmem_cache analysis suggests the importance of

a facility to sanitize data that is no longer in use. The choice of

jprobes to perform the sanitization seems like the most

promising technology as it is non-intrusive and is immedi-

ately portable to other systems with probes compiled in the

kernel. Its C interface to function hooking also makes it

extremely desirable since instruction level work is completely

avoided.

8. Conclusion

We have presented, from both an investigative and privacy

perspective, the importance of freed information contained

within objects backed by kmem_cache structures. While

previous work has been able to recover free information

through unorganized methods, our techniques are the first to

mine the kmem_cache facility in an organized way to support

live forensics investigations. Previously executed processes,

memory mappings, sent and received network packets, NAT

translations, accessed file system inodes, and more can be

recovered through enumeration of specific kmem_cache

caches. The implications of this capability for live forensics

are large, as this informationwas previously either completely

unavailable or difficult to obtain, requiring ad hocmethods. In

order to protect the privacy of users, we also discussed

portable methods for erasing this information. This ensures

that private information is no longer recoverable once it has

served its purpose and cannot be leveraged by attackers to

steal sensitive information.

r e f e r e n c e s

Arasteh A. Forensic memory analysis: from stack and code
execution history. In: Proceedings of the 2007 Digital Forensic
Research Workshop (DFRWS), 2007.

Betz C. MemParser, 2005. http://sourceforge.net/projects/
memparser/

Case A, Cristina A, Marziale L, Richard G, Roussev V. FACE:
automated digital evidence discovery and correlation. In:
Proceedings of the 2008 Digital Forensic Research Workshop
(DFRWS), 2008.

Chow J, Pfaff, B, Garfinkel T, Christopher K, Rosenblum M.
Understanding data lifetime via whole system simulation. In:
Proceedings of the 13th USENIX security symposium, August
2004.

Chow J, Pfaff, B, Garfinkel T, Rosenblum, M. Shredding your
garbage: reducing data lifetime through secure deallocation. In:
Proc. 14th USENIX Security Symposium. Aug. 2005, p. 331e346.

Dolan-Gavitt B, Srivastava A, Traynor P, Giffin J. Robust signatures
for kernel data structures. In: Proceedings of the ACM
conference on Computer and Communications Security (CCS),
2009.

Dolan-Gavitt B. The VAD tree: a process-eye view of physical
memory. In: Proceedings of the 2007 Digital Forensic Research
Workshop (DFRWS), 2007.

Garner G. kntlist, http://www.gmgsystemsinc.com/knttools/,
2005

H L. Linux kernel heap tampering detection. In: Phrack 66, Article
15, 2009.

Halderman JA, Schoen SD, Heninger N, Clarkson W, Paul W,
Calandrino JA, et al. Lest we remember: cold boot attacks on
encryption keys; 2008.

Schuster A. Searching for processes and threads in Microsoft
Windows memory dumps. In: Digital Forensic Research
Workshop (DFRWS), 2006.

Schuster A. The impact of Microsoft Windows pool allocation
strategies on memory forensics. In: Proceedings of the 2008
Digital Forensic Research Workshop (DFRWS), 2008.

Solomon J, Huebner E, Bem D, Szezynska M. User data persistence
in physical memory. Digital Investigation June 2007;4(2):
68e72.

Volatility. https://www.volatilesystems.com/default/volatility/,
2009.

Andrew Caseis a Senior Security Researcher at Digital Forensics
Solutions, LLC.

Lodovico Marziale is a Senior Security Researcher at Digital
Forensics Solutions, LLC.

Cris Neckar is a Senior Application Security Consultant at Neo-
hapsis. He is also an Adjunct Professor of Computer Science at
DePaul University.

Golden G. Richard III is Professor of Computer Science and
Director of the Greater New Orleans Center for Information
Assurance (GNOCIA) at the University of New Orleans. He is also
CTO of Digital Forensics Solutions, LLC.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 1eS 4 7 S47

	Treasure and tragedy in kmem_cache mining for live forensics investigation
	Introduction
	Related work
	kmem_cache internals
	SLAB
	SLUB
	Handling freed structures

	Inactive entry recovery
	Processes
	Memory mappings
	Open files
	Filesystem inode caches
	Socket buffers
	Bound sockets
	Netfilter NAT table

	Privacy implications/fixes
	Evaluation
	Future work
	Conclusion
	References

